Exam: Ch 13 – 17	Name:	Name:										
AP Chem (70 pts, 60 min)	I have not giv	I have not given, received, nor will give any aid on this exam.										
Version I	Period: 5	6	7	March 21 & 22, 2005								

MC:	(/ 4)(3 pts each) =	FR:	Overall:

SECTION I: Multiple Choice (3 pts each): Choose the option that is the best answer or completes each question or statement. Write your answers in the blanks provided and erase mistakes completely. In this section, as a correction for haphazard guessing, one-fourth of the number of questions you answer incorrectly will be subtracted from the number of questions you answer correctly.

- 1. An unsaturated solution is one that: a. Contains more dissolved solute than the solubility allows b. Contains the maximum concentration of solute particles c. Has a concentration lower than the solubility d. Has the dissolved solute in equilibrium with the un-dissolved solute e. Not enough information given or none of the above Ans: 2. Which one of the following is most soluble in water? a. CH₃OH b. CH₃CH₂OH c. CH₃CH₂CH₂OH d. CH₃CH₂CH₂CH₂OH e. Not enough information given or none of the above Ans: 3. Of the units below, ______ are appropriate for a first-order reaction rate constant. a. $M s^{-1}$ b. s^{-1} c. L/mol d. M⁻¹ s⁻¹ e. Not enough information given or none of the above Ans: Consider the following reaction for Questions 4 – 5: $2 \text{ NO}(g) \leftrightarrow N_2(g) + O_2(g)$ The equilibrium constant for the reaction above is $K_{eq} = 230$ at 100°C. At equilibrium, 4. a. Products predominate b. Reactants predominate c. Approximately equal quantities of products and reactants are present d. Only products are present e. Only reactants are present Ans: 5. In an experiment, 0.35 mol of N₂ and 0.40 mol of O₂ are placed in a 1.00 L vessel at 25°C. At equilibrium,
 - it is determined that 0.19 mol of O_2 remain. K_p at this temperature is:
 - a. 0.063
 - b. 0.15
 - c. 3.7
 - d. 550
 - e. Not enough information given or none of the above

Ans: _____

6.	 Which one of the following statements about K_w is false? a. K_w is the chemical equilibrium expression of: OH⁻ (aq) + H⁺ (aq) ↔ H₂ b. K_w is known as the ion-product constant for water. c. K_w changes with temperature. d. The value of K_w show that water is a weak base. e. None of the above 	20 (l) Ans:
7.	 ZOH is a weak base. An aqueous solution of ZOH is prepared by dissolving 0. sufficient water to yield 2.00 L of solution. The pOH of the solution was 9.07 a. 3.5 x 10⁻⁹ b. 6.9 x 10⁻⁹ c. 1.8 x 10⁻¹⁷ d. 3.6 x 10⁻¹⁷ e. Not enough information given 	040 mol of ZOH in at 25°C. The K _b of ZOH is: Ans:
8.	Of the following, which is most likely to be the strongest base? a. H ₃ PO ₄ b. H ₂ PO ₄ ⁻ c. HPO ₄ ²⁻ d. PO ₄ ³⁻ e. AsO ₄ ³⁻	Ans:
9.	 Which of the following cannot act as a Lewis acid? a. HCl b. BF₃ c. H₃O⁺ d. CO₂ e. All of these can be Lewis acids 	Ans:
10.	 Determine the K_{sp} for manganese (II) hydroxide, where the solubility is 2.2 x 10 a. 1.1 x 10⁻¹⁴ b. 4.3 x 10⁻¹⁴ c. 2.1 x 10⁻¹⁴ d. 4.8 x 10⁻¹⁰ e. Not enough information given or none of the above 	0 ⁻⁵ M. Ans:
11.	 Which of the following could be added to a solution of sodium acetate to produ Acetic acid Hydrochloric acid Potassium acetate Sodium chloride 	ice an effective buffer?
	 a. I only b. III only c. IV only d. I or II e. I, II, III, or IV 	Ans:

SECTION II: Free Response

12. (13 pts) Silver chromate is a dense, reddish-brown, slightly soluble solid.

- a. (3 pts) At 25°C, the solid dissolves slightly in water. Write the balanced chemical equilibrium equation for this dissolution.
- b. (3 pts) Write the appropriate chemical equilibrium expression for this dissolution.
- c. (4 pts) If the $\Delta H_{reaction} = -20 \text{ kJ/mol}$, and if the temperature of the system were increased from 25°C to 100°C, what would be the effect on the value of K_{sp}? Briefly explain in 1-2 sentences.
- d. (4 pts) If solid silver nitrate added to the system at equilibrium at 25°C, what would be the effect on the concentration of chromate in the solution? Briefly explain in 1-2 sentences.
- 13. (12 pts) A sample of an ionic compound, NaC_6H_5O , where $C_6H_5O^-$ is the conjugate ion of phenolic acid, was dissolved in water to make 100.0 mL of solution. It was then titrated with 0.100 M HCl. After the addition of 500.0 mL HCl, the pH was found to be 5.00. After the addition of another 500.0 mL of HCl, it was discovered that the equivalence point was reached.
 - a. (6 pts) Calculate the K_a of HC_6H_5O .

b. (6 pts) Calculate the pOH of the solution at the equivalence point of the titration.

14. (12 pts) Consider the titration of 50.00 mL of 0.250 M hydrazine, H_2NNH_2 ($K_b = 1.3 \times 10^{-2}$) with 0.500 M hydrochloric acid. Using the axes below, make a sketch of the titration curve, calculating <u>only</u> the initial pH, the pH at the equivalence point, and the final pH. Sketch in the rest of the curve appropriately. Be sure to label the axes and include units.

Use this space for your work:

• Initial pH

• The pH at the equivalence point

• The final pH

15. (3 pts) Describe how to increase the buffer capacity of a buffer, and how this would affect the function of a buffer.

Exam: Ch 13 – 17 AP Chem (72 pts, 60 min)	Name: I have not given, received, nor will give any aid on this exam.										
Version J	Period:	5	6	7	March 21 & 22, 2005						
	1)			ED	0 "						

MC:	$(\ \ / 4)(3 \text{ pts each}) = \$	FR:	Overall:	

SECTION I: Multiple Choice (3 pts each): Choose the option that is the best answer or completes each question or statement. Write your answers in the blanks provided and erase mistakes completely. In this section, as a correction for haphazard guessing, one-fourth of the number of questions you answer incorrectly will be subtracted from the number of questions you answer correctly.

1. In a saturated solution of a salt in water: a. The rate of crystallization > the rate of dissolution b. The rate of dissolution > the rate of crystallization c. The rate of crystallization = the rate of dissolution d. The addition of additional salt causes massive crystallization e. Not enough information given or none of the above Ans: 2. Which one of the following is most soluble in hexane (C_6H_{14}) ? a. CH₃OH b. CH₃CH₂OH c. CH₃CH₂CH₂OH d. CH₃CH₂CH₂CH₂OH e. Not enough information given or none of the above Ans: 3. Of the units below, ______ are appropriate for a second-order reaction rate constant. a. $M s^{-1}$ s^{-1} b. L/mol c. d. M⁻¹ s⁻¹ Not enough information given or none of the above e. Ans: 4. Of the following, which is most likely to be the strongest base? a. ClO b. ClO₂ c. ClO₃ d. ClO₄e. IO Ans: 5. Which of the following cannot act as a Lewis base? Cl a. b. NH₃ c. CN⁻ d. CH₄ e. All of these can be Lewis bases Ans:

Consid	ler the f	Collowing reaction for Questions 6 – 7: $2 \text{ NO}(g) \leftrightarrow N_2(g) + O_2(g)$	
6.	The eq	uilibrium constant for this reaction is $K_{eq} = 10$ at 50°C. The equilibrium constant	t for the following
	reactio	n is therefore:	
	$N_{2}(g)$	$+ O_2(g) \leftrightarrow 2 \text{ NO}(g)$	
	a.	0.1	
	b.	1	
	с.	-10	
	d.	100 Nationauch information aisen annona af tha about	A
	e.	Not enough information given of none of the above	Ans:
7.	At 200	$^{\circ}$ C, the equilibrium constant for the reaction is 2.40 x 10 ³ . 36.1 atm of NO are a	dded to a vessel that
	is then	sealed. At equilibrium, the partial pressure of O_2 is atm	
	a.	294	
	b.	35.7	
	c.	18.1	
	d.	6.00	
	e.	Not enough information given or none of the above	Ans:
8.	Which	one of the following statements about K _w is false?	
	a.	pK _w is 14.00 at 25°C	
	b.	The value of K_w is always 1.0 x 10 ⁻¹⁴ .	
	c.	K _w changes with temperature.	
	d.	The value of K_w show that water is a weak acid.	
	e.	Not enough information given or none of the above	Ans:
9.	HZ is a	a weak acid. An aqueous solution of HZ is prepared by dissolving 0.040 mol of I	HZ in sufficient
	water t	to yield 2.00 L of solution. The pH of the solution was 4.93 at 25°C. The K_a of I	HZ is:
	a.	1.2 x 10 ⁻⁵	
	b.	6.9×10^{-9}	
	с.	1.4×10^{-10}	
	d.	9.9 x 10 ⁻²	
	e.	Not enough information given or none of the above	Ans:
10.	Determ	nine the K_{sp} for magnesium hydroxide, where the solubility is 1.4 x 10 ⁻⁴ M.	
	a.	2.7×10^{-12}	
	b.	1.1×10^{-11}	
	c.	2.0×10^{-8}	
	d.	3.9 x 10 ⁻⁶	
	e.	Not enough information given or none of the above	Ans:
11.	Which	of the following could be added to a solution of ammonium bromide to produce	an effective buffer?
		I. Ammonia	
		II. Ammonium iodide	
		III. Hydrobromic acid	
		IV. Soaium nyaroxiae	
	a.	I only	
	b.	II only	

- c. III onlyd. I or IVe. II or IV

Ans: _____

SECTION II: Free Response

12. (12 pts) Plumbous iodide is a dense, golden yellow, slightly soluble solid.

- a. (3 pts) At 25°C, the solid dissolves slightly in water. Write the balanced chemical equilibrium equation for this dissolution.
- b. (3 pts) Write the appropriate chemical equilibrium expression for this dissolution.
- c. (3 pts) If the $\Delta H_{reaction} = 46 \text{ kJ/mol}$, and if the temperature of the system were lowered from 25°C to 15°C, what would be the effect on the value of K_{sp}? Briefly explain in 1-2 sentences.
- d. (3 pts) If additional solid plumbous iodide were added to the system at equilibrium, what would be the effect on the concentration of iodide in the solution? Briefly explain in 1-2 sentences.
- 13. (12 pts) A sample of an ionic compound NH₃CH₃Cl, where NH₃CH₃⁺ is the conjugate ion of a weak base, was dissolved in water to make 200.0 mL of solution. It was then titrated with 0.200 M NaOH. After the addition of 500.0 mL NaOH, the pH was found to be 8.50. After the addition of another 500.0 mL of NaOH, it was discovered that the equivalence point had been reached.
 - a. (6 pts) Calculate the K_b of NH_2CH_3 .

b. (6 pts) Calculate the pH of the solution at the equivalence point of the titration.

14. (12 pts) Consider the titration of 50.00 mL of 0.125 M chlorous acid ($K_a = 1.1 \times 10^{-2}$) with 0.250 M sodium hydroxide. Using the axes below, make a sketch of the titration curve, calculating <u>only</u> the initial pH, the pH at the equivalence point, and the final pH. Sketch in the rest of the curve appropriately. Be sure to label the axes and include units.

Use this space for your work:

• Initial pH

• The pH at the equivalence point

• The final pH

15. (3 pts) Compare and contrast the equivalence point and endpoint of a titration.