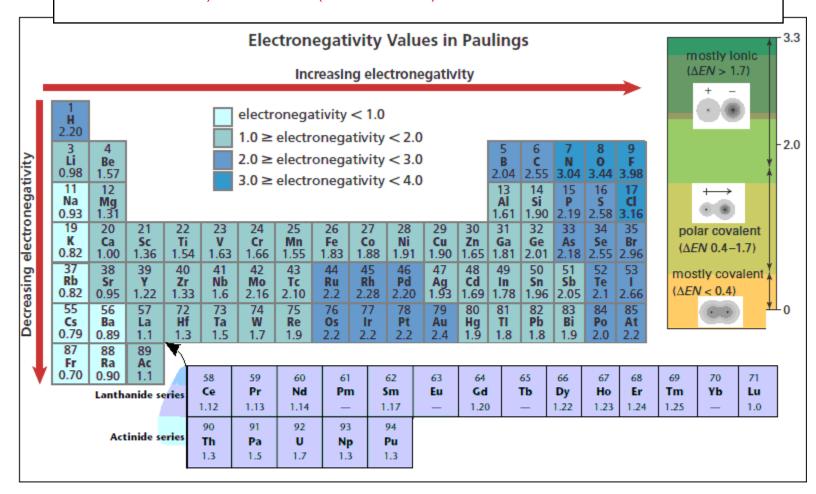

2s 2p s 1 p 3 3 5 5 7 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p	1s	Sublevels (types of orbitals) present	Number of orbitals related to sublevel
5s 5p 5d 5f 6s 6p 6d	3s 3p 3d	р	5
	5s 5p 5d 5f		
	/ /		



Keywords: Atomic Radius & IE : ENC, Electron Affinity & EN : Coulomb's law Strength of Bonds : 1) Ionic Bond Strength given by Lattice Energy (Colomb's Law) $F = [(q1 * q2) / r^2]$

2) Covalent bond (bond energy)

3) Metallic Bond (Coulomb's Law)

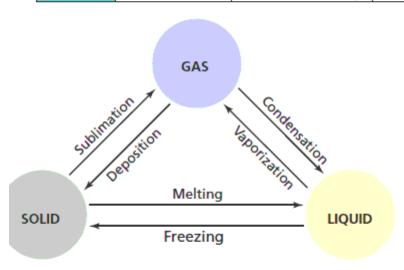
Guideline	Cations	Anions	Result	Exceptions
1	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , NH ₄ ⁺	NO ₃ ⁻ , CH ₃ COO ⁻ , ClO ₃ ⁻	soluble	Ca(ClO ₃) ₂ is insoluble
				_
				-
				-
	1	1		1

	Valence = −1				
lon	Name	lon	Name		
CN-	cyanide	H ₂ PO ₃ -	dihydrogen phosphite		
CH ₃ COO-	acetate	H ₂ PO ₄ -	dihydrogen phosphate		
ClO-	hypochlorite	MnO ₄ -	permanganate		
ClO ₂ -	chlorite	NO ₂ -	nitrite		
ClO ₃ -	chlorate	NO ₃ -	nitrate		
ClO ₄ -	perchlorate	OCN-	cyanate		
HCO ₃ -	hydrogen carbonate	HS-	hydrogen sulfide		
HSO ₃ -	hydrogen sulfite	OH-	hydroxide		
HSO ₄ -	hydrogen sulfate	SCN-	thiocyanate		

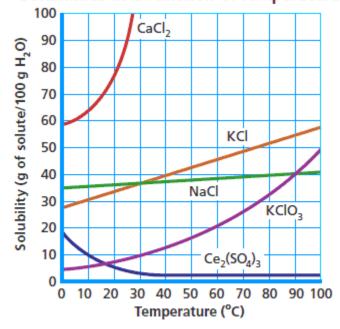
	Valence = −2				
lon	Name	lon	Name		
CO ₃ ²⁻	carbonate	O ₂ ²⁻	peroxide		
$C_2O_4^{2-}$	oxalate	SiO ₃ ²⁻	silicate		
CrO ₄ ²⁻	chromate	SO ₃ ²⁻	sulfite		
Cr ₂ O ₇ ²⁻	dichromate	SO ₄ ²⁻	sulfate		
HPO ₃ ²⁻	hydrogen phosphite	S ₂ O ₃ ²⁻	thiosulfate		
HPO ₄ ²⁻	hydrogen phosphate				

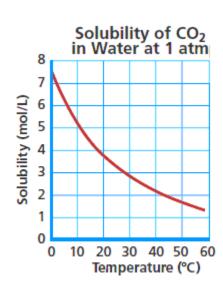
	Prefix and suffix	Number of oxygen atoms
hypo	ite	x – 2 oxygen atoms
	ite	x – 1 oxygen atoms
	ate	x oxygen atoms
per	ate	x + 1 oxygen atoms

$\frac{\text{mol of solute, } n}{\text{volume of solution, } V}, \text{ also written as } C = \frac{n}{V}$
1


Gas Constant, R		
Units of R	Numerical value of R	
L·atm mol·K	0.0821	
L·kPa mol·K	8.314	
L·mm Hg mol·K	62.4	

Relationships Among Energy Units		
Relationship	Conversion factors	
1 J = 0.2390 cal	1 J 0.2390 cal 0.2390 cal 1 J	
1 cal = 4.184 J	1 cal 4.184 J 4.184 J 1 cal	
1 kJ = 1000 J	1 kJ 1000 J 1000 J 1 kJ	
1 Calorie = 1 kcal	<u>1 Calorie</u> 1000 cal	
1 kcal = 1000 cal	1000 cal 1 kcal	


Enthalpy Changes for Exothermic and Endothermic Reactions		
Type of reaction	Sign of $\Delta H_{ m rxn}$	
Exothermic	Negative	
Endothermic	Positive	


strong forces weak forces

Force	lonic	Polar (dipole–dipole)	Dispersion
Type of force	between ions (intramolecular)	between molecules (intermolecular)	between molecules (intermolecular)
State	usually solid	liquid or gas (can also be solid)	liquid or gas
Example	NaCl _(s)	$CH_3CH_2OH_{(\ell)}$, $HCl_{(g)}$	C ₅ H _{12(ℓ)} , CH _{4(g)} , CO _{2(g)}

Solubilities as a Function of Temperature

Rules for determin	Exam		
Rules	Examples	the substance.	
A pure element has an oxidation number of 0.	Na in $Na_{(s)}$, Br in $Br_{2(\ell)}$, and P in $P_{4(s)}$ all have an oxidation number of 0.	Element	Monatomic ion
2. The oxidation number of an element in a monatomic ion equals the charge of the ion.	The oxidation number of Al in Al $^{3+}$ is +3. The oxidation number of Se in Se $^{2-}$ is -2.	Molect polyat io	omic
3. The oxidation number of hydrogen in its compounds is +1, except in metal hydrides, where the oxidation number of hydrogen is -1.	The oxidation number of H in H_2S or CH_4 is +1. The oxidation number of H in NaH or in CaH_2 is -1.	Oxidation number equals zero.	Oxidation number equals the charge.
4. The oxidation number of oxygen in its compounds is usually -2, but there are exceptions. These include peroxides, such as H ₂ O ₂ , and the compound OF ₂ .	The oxidation number of O in Li_2O or in KNO_3 is -2 .	Oxidation number electronegative same as the character have as	per of the most element is the arge it would
5. In covalent compounds that do not contain hydrogen or oxygen, the more electronegative element is assigned an oxidation number that equals the negative charge it usually has in its ionic compounds.	The oxidation number of Cl in PCl_3 is -1 . The oxidation number of S in CS_2 is -2 .	Molecule The sum of the oxidation	Polyatomic ion The sum of
6. The sum of the oxidation numbers of all the elements in a compound is 0.	In CF ₄ , the oxidation number of F is -1 , and the oxidation number of C is $+4$. $(+4) + 4(-1) = 0$	numbers equals zero.	the oxidation numbers equals the
7. The sum of the oxidation numbers of all the elements in a polyatomic ion equals the charge on the ion.	In NO ₂ ⁻ , the oxidation number of O is -2 , and the oxidation number of N is $+3$. $(+3) + 2(-2) = -1$		charge on the ion.

Name	carbons	molecular formula
methane	1	CH ₄
ethane	2	CH ₃ CH ₃
propane	3	CH ₃ CH ₂ CH ₃
butane	4	CH ₃ (CH ₂) ₂ CH ₃
pentane	5	CH ₃ (CH ₂) ₃ CH ₃
hexane	6	CH ₃ (CH ₂) ₄ CH ₃
heptane	7	CH ₃ (CH ₂) ₅ CH ₃
octane	8	CH ₃ (CH ₂) ₆ CH ₃
nonane	9	CH ₃ (CH ₂) ₇ CH ₃
decane	10	CH ₃ (CH ₂) ₈ CH ₃

Compound type	General formula	Functional group
alkane	none	propane
alkene	c=c	propene
alkyne	_c≡c—	propyne
Halocarbon	R—X (X = F, Cl, Br, I)	Halogen

Key Equations and Relationships

• density:
$$\frac{\text{mass}}{\text{volume}}$$

- conversion between °C + 273 = K temperature scales: K - 273 = °C
- law of conservation of mass Mass_{reactants} = Mass_{products}
- Determining the number of protons and electrons
 Atomic = number = number
 number of protons of electrons
- EM Wave relationship: $c = \lambda \nu$
- Energy of a quantum: $E_{
 m quantum} = h
 u$
- Energy of a photon: $E_{\rm photon} = h\nu$

- percent error: $percent error = \frac{error}{accepted value} \times 100$
- slope of graph: slope $=\frac{y_2-y_1}{x_2-x_1}=\frac{\Delta y}{\Delta x}$
- Determining the number of neutrons
 Number = mass atomic of neutrons number number
- Energy change of an electron: $\Delta E = E_{\text{higher-energy orbit}} E_{\text{lower-energy orbit}}$ $\Delta E = E_{\text{photon}} = h \nu$
- de Broglie's equation: $\lambda = \frac{h}{m\nu}$
- number of representative particles = number of moles \times $\frac{6.02 \times 10^{23} \text{ representative particles}}{1 \text{ mole}}$
- number of moles = number of representative particles \times $\frac{1 \text{ mole}}{6.02 \times 10^{23} \text{ representative particles}}$
- mass = number of moles $\times \frac{\text{number of grams}}{1 \text{ mole}}$
- number of moles = mass $\times \frac{1 \text{ mole}}{\text{number of grams}}$
- percent by mass = $\frac{\text{mass of element}}{\text{mass of compound}} \times 100$
- molecular formula = (empirical formula)n
- moles of known $\times \frac{\text{moles of unknown}}{\text{moles of known}} = \text{moles of unknown}$
- $\frac{\text{actual yield (from experiment)}}{\text{theoretical yield (from stoichiometric calculations)}} \times 100 = \text{percent yield}$
- Kinetic energy: $KE = 1/2mv^2$

- Graham's effusion: $\frac{\text{Rate}_A}{\text{Rate}_B} = \sqrt{\frac{\text{molar mass}_B}{\text{molar mass}_A}}$
- Dalton's law of partial pressures: $P_{\text{total}} = P_1 + P_2 + P_3 + ...P_n$

• Boyle's law: $P_1V_1 = P_2V_2$, constant temperature

• Charles's law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$, constant pressure

• Gay-Lussac's law: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$, constant volume

• Henry's law: $\frac{S_1}{P_1} = \frac{S_2}{P_2}$

• Molarity (M) = $\frac{\text{moles of solute}}{\text{liters of solution}}$

• $q = c \times m \times \Delta T$

• $\Delta H_{\text{rxn}}^{\text{o}} = \Sigma \Delta H_{\text{f}}^{\text{o}}(\text{products}) - \Sigma \Delta H_{\text{f}}^{\text{o}}(\text{reactants})$

• Combined gas law: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

• Ideal gas law: PV = nRT

• Finding molar mass: $M = \frac{mRT}{PV}$

• Finding density: $D = \frac{MP}{RT}$

• Molarity-volume : $M_1V_1 = M_2V_2$