Titrations Practice Worksheet
Find the requested quantities in the following problems:

1) If it takes 54 mL of 0.1 M NaOH to neutralize 125 mL of an HCl solution, what is

$$
\begin{aligned}
& M_{1}=0.1 \mathrm{M} \\
& V_{1}=54 \mathrm{~mL} \\
& M_{2}=? \\
& V_{2}=125 \mathrm{~mL}
\end{aligned}
$$ the concentration of the HCl ?

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} V_{2} \\
& (0.1 \mathrm{M})(54 \mathrm{~mL})=(125 \mathrm{~mL}) M_{2} \\
& M_{2}=\frac{(0.1 \mathrm{M})(54 \mathrm{~mL})}{125 \mathrm{~mL}}=0.0432 \mathrm{M}=4.32 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

The concentration of HCl is

$$
4.32 \times 10^{-2} \mathrm{M}
$$

2) If it takes 25 mL of 0.05 M HCl to neutralize 345 mL of NaOH solution, what is the concentration of the NaOH solution?

$$
\begin{aligned}
& M_{1}=0.05 \mathrm{M} \\
& V_{1}=25 \mathrm{~mL} \\
& M_{2}=? \\
& V_{2}=345 \mathrm{~mL}
\end{aligned}
$$

$$
\begin{aligned}
& \left.M_{1} V_{1}=M_{2} V_{2}\right)=(345 \mathrm{~mL}) M_{2} \\
& (0.05 \mathrm{M})(25 \mathrm{~mL})=(0.05 \mathrm{M})(25 \mathrm{~mL}) \\
& M_{2}=\frac{(045 \mathrm{~mL}}{34}=0.00362 \mathrm{M}=3.62 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

The concentration of NaOH is

$$
3.62 \times 10^{-3} \mathrm{M}
$$

3) If it takes 50 mL of 0.5 M KOH solution to completely neutralize 125 mL of sulfuric acid solution $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, what is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
$\mathrm{H}^{+}: \mathrm{OH}^{-}$is $2: 1 \quad\left[\mathrm{H}^{+}\right]=\frac{.25 \mathrm{~mol}}{2}=12.5 \mathrm{~mol} \mathrm{H}$ ne ended
$n=M V$
$n=(0.5 \mathrm{M} \mathrm{\gamma} 50 \mathrm{~mL})=25 \mathrm{~mol} \mathrm{OH}^{-}$
2 times $\left[\mathrm{OH}^{-}\right]$is needed

$$
M=\frac{12.5 \mathrm{~mol}}{125 \mathrm{~mL}}=0.10 \mathrm{M}
$$

to neutralize $\left[\mathrm{H}^{+}\right], \rightarrow\left[\mathrm{H}^{+}\right]=\frac{1}{2}\left[\mathrm{OH}^{-}\right]$
4) Can I titrate a solution of unknown concentration with another solution of unknown concentration and still get a meaningful answer? Explain your answer in a few sentences.
Titration cannot be done without molality of at least one of the substances. In order to solve. $M_{1} V_{1}=M_{2} V_{2}$, both molarities cannot be unknown.
5) Explain the difference between an endpoint and equivalence point in a titration.

Endpoint: titration can be stopped.
Equivalence point: when $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$are neutralized.
The effectiveness of a titration is measured by the closeness of the end point to the equivalence point.
6) How many moles of LiOH are needed to exactly neutralize 2.0 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ dissociates into $2 \mathrm{~mol} \mathrm{H}^{+}$ions For $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$, there are 4 mol Ht ions
$4 \mathrm{~mol} \mathrm{H}^{+}$needs $4 \mathrm{~mol} \mathrm{OH}^{-}$
4 mol LioH are needed.
7) How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to exactly neutralize 5.0 moles of NaOH ?

1 mol NaOH dissociates into $1 \mathrm{~mol} \mathrm{OH}^{-}$ions For 5 mol NaOH , there are $5 \mathrm{~mol} \mathrm{OH}^{-}$ions $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ dissociates into $2 \mathrm{~mol} \mathrm{H} \mathrm{H}^{+}$ions.

Need $1 / 2$ of the $\left[\mathrm{OH}^{-}\right]$to neutralize H^{+}

$$
\frac{1}{2}(5 \mathrm{~mol})=2.5 \mathrm{~mol}
$$

$2.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ needed
8) How many moles of HCl are needed to neutralize 0.10 L of 2.0 M NaOH ?

I mol NaOH dissociates into $1 \mathrm{~mol} \mathrm{OH}^{-}$; 1 mol HCl dissociates into 1 mol Find mol of OH^{-}:

$$
\begin{aligned}
& n=M V=(2.0 M)(0.10 \mathrm{~L}) \\
& n=0.20 \mathrm{~mol}
\end{aligned}
$$

0.20 mol of $1+C 1$ needed.
9) How many moles of NaOH are needed to neutralize 0.010 L of $0.20 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

I mol NaH dissociates into $1 \mathrm{~mol} \mathrm{OH}^{-}, 1 \mathrm{~mol} \mathrm{H} \mathrm{HO}_{4}$ dissociates into 2 mol H Find mol of H^{+}ions For $0.0040 \mathrm{~mol} \mathrm{H}^{+}$ions, need $0.0040 \mathrm{~mol} \mathrm{OH}^{-} \mathrm{ims}$

$$
n=M V=(0.20 M)(0.010 L)
$$

$$
n=0.0020 \mathrm{mul} \mathrm{H}_{2} \mathrm{SO}_{4}
$$

0.0040 mul NaOltions needed. \rightarrow gees $2(0.0020) \mathrm{H}^{+} \mathrm{ions}$
10) If it takes 15.0 mL of 0.40 M NaOH to neutralize 5.0 mL of HCl , what is the molar concentration of the HCl solution?

$$
\begin{array}{lc}
M_{1}=0.40 \mathrm{M} & M_{1} V_{1}=M_{2} V_{2} \\
V_{1}=15.0 \mathrm{~mL} & (0.40 \mathrm{M})(15.0 \mathrm{~mL})=(5.0 \mathrm{~mL})\left(M_{2}\right) \\
M_{2}=? & M_{2}=\frac{(0.40 \mathrm{M})(15.0 \mathrm{~mL})}{5.0 \mathrm{~mL}}=1.2 \mathrm{M} \\
V_{2}=5.0 \mathrm{~mL} &
\end{array}
$$

The molar concentration of HCl is 1.2 M .
11) If it takes 10.0 mL of $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to neutralize 30.0 mL of KOH , what is the molar concentration of the KOH ?
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ dissociates into 2 mol $\mathrm{H}^{+} \quad 1 \mathrm{~mol} \mathrm{Kol}$ dissociates into $1 \mathrm{~mol} \mathrm{olt}^{-}$

$$
n=M V=(2.0 M)(10.0 \mathrm{~mL})=20 \mathrm{~mol}
$$

$$
20 \mathrm{~mol} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 40 \mathrm{~mol} \mathrm{Ht}
$$

$$
\text { need } 40 \mathrm{~mol} \mathrm{OH}^{-}
$$

$$
\begin{aligned}
& n=M V \\
& 40 \mathrm{~mol}=M(30.0 \mathrm{~mL}) \\
& M=\frac{40 \mathrm{~mol}}{30 \mathrm{~mL}}=1.33 \mathrm{M} \mathrm{KOH}
\end{aligned}
$$

12) How many mL of $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are required to neutralize 30.0 mL of 1.0 M NaOH ?
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ dissociates into $2 \mathrm{~mol} \mathrm{H}^{+} 1 \mathrm{~mol} \mathrm{NaOH}$ dissociates into 1 mol oft

$$
n=M V=(1.0 M)(30.0 \mathrm{ml})=30.0 \mathrm{~mol}
$$

$$
\begin{aligned}
& n=M V \\
& 15.0 \mathrm{~mol}=(2.0 \mathrm{M}) V \\
& V=\frac{15.0 \mathrm{~mol}}{2.0 \mathrm{M}}=7.5 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4} \text { needed }
\end{aligned}
$$

$30 \mathrm{~mol} \mathrm{NaOH} \rightarrow 30 \mathrm{~mol} \mathrm{OH}+$
need 3 omoli $\mathrm{H}^{+} \rightarrow \frac{1}{2}\left(30 \mathrm{~mol}_{2} \mathrm{H}_{2} \mathrm{SO}_{4}\right.$
13) How many mL of $0.10 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ are required to neutralize 25.0 mL of 0.50 M
HNO_{3} ? $1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ dissociates into $2 \mathrm{~mol} \mathrm{oH}{ }^{-}$I mol $\mathrm{HNO}_{3} \rightarrow 1 \mathrm{~mol} \mathrm{H+}$

$$
\begin{aligned}
n= & M V=(0.50 M)(25.0 \mathrm{~mL}) \\
n= & 12.50 \mathrm{~mol} \mathrm{HNO} \\
& 1 \mathrm{~J} \\
& 12.50 \mathrm{~mol} \mathrm{H}
\end{aligned}+12.50 \mathrm{~mol} \mathrm{HH}^{-}=1
$$

$$
12.50 \mathrm{~mol} \mathrm{oH} \text { comes from }
$$

$$
\frac{1}{2}(12,50 \mathrm{~mol}) \mathrm{Ca}(\mathrm{OH})_{2}
$$

$$
\begin{gathered}
\text { need } 6.25 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\
n=M \mathrm{~V} \\
6.25 \mathrm{~mol}=(0.10 \mathrm{M})(\mathrm{V}) \\
V=\frac{6.25 \mathrm{~mol}}{0.10 \mathrm{M}}=62.5 \mathrm{~mL} \mathrm{Ca}(\mathrm{OH})_{2}
\end{gathered}
$$

