Chemistry 5

Lecture Demo: Solubility Equilibrium

Consider two "insoluble" compounds, white lead carbonate (PbCO₃) and yellow lead iodide (PbI₂). When placed in water, the following equilibria are established with the K_{sp} indicated. (We will negelect the hydrolysis reaction of the weak base carbonate.)

PbCO_{3(s)}
$$\rightleftharpoons$$
 Pb⁺²_(aq) + CO₃⁻²_(aq) K_{sp} = 3.3 x 10⁻¹⁴
PbI_{2(s)} \rightleftharpoons Pb⁺²_(aq) + 2 I⁻_(aq) K_{sp} = 1.4 x 10⁻⁸

1. Combine 5 mL 0.10 M Na₂CO_{3(aq)} and 5 mL of 0.10 M Pb(NO₃)_{2(aq)}

Will precipiation occur?		
Ion concentrations before ppt:	[CO ₃ -2] ₀	[Pb+2] _o

Q expression and value:

Conclusion: ppt	no ppt
-----------------	--------

Solubility equilibrium after precipitation: Ion concentrations after ppt:

K_{sp} expression and value:

Solubility equilibrium reaction:

Equilibrium concentrations:

$PbCO_{3(s)} \rightleftharpoons Pb$	$^{+2}(aq) + CO_3^{-2}(aq)$	$K_{sp} = 3.3 \times 10^{-14}$
$PbI_{2(s)} \rightleftharpoons Pb^{+2}$	$(aq) + 2 I^{-}(aq)$	$K_{sp} = 1.4 \text{ x } 10^{-8}$

2. Now combine 10 mL 0.10 M $KI_{(aq)}$ and 5 mL of 0.10 M $Pb(NO_3)_{2(aq)}$

Will precipiation occur?

Proprieta Contractional Contraction		
Ion concentrations before ppt:	[I-] ₀	[Pb+2] _o

Q expression and value:

Conclusion: ppt no ppt

Solubility equilibrium after precipitation: Ion concentrations after ppt:

K_{sp} expression and value:

Solubility equilibrium reaction:

Equilibrium concentrations:

Finally, we can use the equilibrium constants for the two precipitation reactions to predict what precipitate will form when we add Pb^{+2} to a mixture of I⁻ and CO_3^{-2} :

PbCO _{3(s)} ≓	$Pb^{+2}(aq) + CO_3^{-2}(aq)$	$K_{sp} = 3.3 \times 10^{-14}$
$PbI_{2(s)} \rightleftharpoons P$	$b^{+2}(aq) + 2 I^{-}(aq)$	$K_{sp} = 1.4 \text{ x } 10^{-8}$

3. Combine 10 mL 0.10 M KI_(aq), 5 mL 0.10 M Na₂CO_{3(aq)}, 5 mL of 0.10 M Pb(NO₃)_{2(aq)}

Based on the Ksp values, which salt to you expect to precipitate more readily?

Will precipiation occur?

Ion concentrations before ppt: $[CO_3^{-2}]_0$ $[Pb^{+2}]_0$ $[I^{-}]_0$

Q expression and value for LEAST soluble salt:

Conclusion: ppt no ppt

Q expression and value for MORE soluble salt:

Conclusion: ppt no ppt

Solubility equilibrium after precipitation: Ion concentrations after ppt:

K_{sp} expression and value:

Solubility equilibrium reaction:

Equilibrium concentrations:

Do we expect there to be any $PbI_{2(s)}$? Summarize the reasons why or why not.

What is observed?

What other factors may be involved in these reactions?