
Shuffleboard.java	and	ShufflePlayer.java	

Shuffleboard	is	a	classic	game	in	which	two	players	play	against	each	other.		One	earns	points	by	getting	a	biscuit	(a	sort	
of	puck)	in	a	region	on	the	playing	surface.		For	the	digital	version	of	the	game,	the	surface	will	look	like	this,	showing	
that	a	biscuit	is	waiting	to	be	launched	at	the	left:	

x	 -	 -	 -	 -	 -	 -	 10	 8	 7	 -10	
Your	score	is	0.	
Press	Enter	to	push	your	biscuit.	

A	launched	biscuit	on	the	surface	will	look	something	like	this,	which	would	be	in	response	to	generating	the	random	
number	4.		This	got	the	player	no	points:	

	 Random	number	is	4.	

-	 -	 -	 -	 x	 -	 -	 10	 8	 7	 -10	
Your	score	is	0.	

In	our	first	version	(Step	1),	you’ll	push	your	biscuit	once,	then	the	game	will	stop.	

Here’s	another	version	of	what	could	happen	after	I	pressed	enter.		The	biscuit	that	got	its	location	after	I	generated	
random	number	8.		This	got	the	player	8	points:	

	 Random	number	is	8.	

-	 -	 -	 -	 -	 -	 -	 10	 x	 7	 -10	
Your	score	is	8.	

Since	we	have	two	players,	player	A	and	player	B,	we’ll	put	names	on	their	biscuits.		When	it’s	A’s	turn,	at	the	beginning	
of	the	game,	this	will	be	shown.		(Don’t	worry	about	showing	later	pucks	in	the	leftmost	positions	to	start,	as	in	the	basic	
version;	we	can	only	play	one	piece	of	a	type	at	a	time.):	

A	 -	 -	 -	 -	 -	 -	 10	 8	 7	 -10	
A’s	score	is	0.	
B’s	score	is	0.	
No	one	is	winning.	
A,	press	Enter	to	push	your	biscuit,	-1	to	quit.	

This	shows	that	the	biscuit	is	on	the	playing	surface,	ready	to	be	pushed	towards	the	numbers.		I	hope	to	land	on	10	so	I	
can	earn	10	points!		If	I	land	on	7,	I’ll	earn	only	7	points.		If	I	land	on	-10,	I	will	lose	10	points.		

	 Random	number	is	9.	

-	 -	 -	 -	 -	 -	 -	 10	 8	 A	 -10	
A’s	score	is	7.	
B’s	score	is	0.	
A	is	winning.	
B,	press	Enter	to	push	your	biscuit,	-1	to	quit.	

Random	number	is	10.	

-	 -	 -	 -	 -	 -	 -	 10	 8	 A	 B	



A’s	score	is	7.	
B’s	score	is	-10.	
A	is	winning.	
A,	press	Enter	to	push	your	biscuit,	-1	to	quit.	
	
Random	number	is	3.	
-	 -	 -	 A	 -	 -	 -	 10	 8	 7	 B	
A’s	score	is	7.	
B’s	score	is	-10.	
A	is	winning.	
B,	press	Enter	to	push	your	biscuit,	-1	to	quit.	
	
Random	number	is	7.	
-	 -	 -	 A	 -	 -	 -	 10	 8	 7	 B	
A’s	score	is	7.	
B’s	score	is	0.	
A	is	winning.	
A,	press	Enter	to	push	your	biscuit,	-1	to	quit.	
-1	

Let’s	see	if	we	all	follow	how	to	play	the	basic	shuffleboard	game	as	described	above.		Answer	the	following	questions	
with	a	neighbor:	

a) What	is	everyone’s	score	when	we	start?	
b) How	does	one	earn	points?	
c) If	a	single	player	were	to	play	three	times,	what	would	be	the	highest	possible	score?		The	lowest	possible	

score?	
d) A	biscuit	shows	up	on	the	far	left	of	the	playing	surface	when?	
e) What	user	input	is	used	to	push	a	biscuit?	
f) How	many	players	are	there?	
g) What	is	the	sentinel	value?	
h) A	player	will	be	an	object	of	its	own	class.		What	kind	of	variables	will	each	player	need?	
i) How	many	biscuits	can	show	up	on	the	playing	surface	at	one	time?	
j) A	plays	and	gets	random	number	2.		On	its	next	turn,	A	plays	and	gets	random	number	3.		Where	does	A	end	up?		

Use	ideas	above.	
k) If	B’s	biscuit	is	pushed	farther	than	A’s	biscuit,	does	A’s	biscuit	get	pushed	by	B?		Use	ideas	above.	
l) You’ll	use	loops	to	do	several	things	when	this	gets	programmed.		See	if	you	can	reason	which	will	happen	

iteratively	(repetitively).		Put	a	1	next	to	each	of	the	following	if	they	happen	1	time	per	turn	(but	over	and	over,	
as	several	turns	are	taken),	or	2	if	they	happen	several	times	per	turn	(and	this	is	further	magnified	when	more	
turns	are	taken).		If	the	even	does	not	repeat,	don’t	put	a	number	next	to	it.	

__Print	the	spots	on	the	playing	surface		 	 __	Print	a	prompt	to	press	Enter	

__Change	whose	turn	it	is	 	 	 	 __	Generate	a	random	number	

__Calculate	the	score	 	 	 	 	 __	Print	a	score	

__	Make	a	player	A	 	 	 	 	 __	Print	a	biscuit	on	the	far	left	of	the	playing	surface	

__	Print	a	biscuit	



We’ll	plan	and	program	this	in	steps.		Take	time	to	review	Step	1,	below,	then	write	some	pseudocode.		Use	Pandas	
Don’t	Eat	Oreos	conventions!		Methods	you	can	reuse	and	very	clear	identifiers	are	a	superb	idea	–	you	should	be	
really	thinking	through	the	pseudocode	to	describe	blocks	(methods,	control	structures)	so	it’s	easy	to	describe	your	
program,	well	before	you	type	any	code!	

Step	1:	Make	a	Shuffleboard	game	work	for	one	person,	one	time:		

1. Make	a	ShufflePlayer	object	(that	means	you’ll	need	a	ShufflePlayer	class).		Construct	it	using	a	name	(e.g.	“A”)	
and	give	it	a	score	of	zero	to	start.		It	will	also	need	a	third	variable	for	position.		Be	sure	that	this	class	has	the	
constructor	with	no	parameters	as	well	as	the	constructor	that	uses	the	name.		Be	sure	you	use	the	constructor	
as	taught	in	class	to	assign	values	to	the	object.		Think	about	if	your	field	variables	should	be	private	
(convention)	or	if	they	will	need	to	be	public.	

2. Draw	the	playing	surface	before	play.		Draw	the	biscuit	on	the	far	left	as	‘x’.		You	should	be	using	a	bunch	of	
if/else-if	conditions	and	statements	in	a	single	while	or	for	loop.		You	will	print	something	each	cycle	of	the	loop.		
What	you	print	depends	on	what	cycle	of	the	loop	it	is;	if	it’s	the	7th	cycle	of	the	loop,	print	10.		Note	that	there	
are	a	range	of	values	where	you	will	print	‘-‘,	so	write	some	efficient	code	to	do	this.	

3. Print	the	score	(it	should	be	zero	since	you	have	not	played	yet)	below	the	playing	surface.	
4. Upon	user	input	of	a	“return,”	generate	a	random	number	using	Math.random().		This	will	indicate	where	the	

biscuit	will	land.		There	are	10	possible	places,	so	make	10	possible	numbers.			Print	the	random	number	once	it	
is	generated.	

5. Draw	the	playing	surface	with	the	biscuit	on	it.		Add	to	your	loop	so	there	is	a	check	to	see	if	the	biscuit’s	
associated	random	number	is	the	same	as	the	loop	cycle	you	are	on,	and	if	so,	print	‘x’	instead	of	what	you	
would	normally	print	on	the	playing	surface.		This	should	require	only	one	new	condition	inside	the	body	of	the	
loop.		

6. Outside	the	loop,	calculate	the	score	based	on	where	the	biscuit	is	on	the	playing	surface.		The	player	should	
have	started	with	0,	and	now	you	will	add	the	score	to	the	earlier	score.		Yes,	players	can	have	negative	scores.		
Print	the	score	below	the	playing	surface.	

	
Step	2:	Make	the	Shuffleboard	game	work	for	two	people,	starting	a	new	biscuit	each	time:	

1. Add	to	your	pseudocode	before	starting	to	code	this,	so	you	don’t	get	confused	about	what	is	the	same,	and	
what	needs	to	change.	

2. Building	from	what	you	created	above,	make	sure	the	original	biscuit	is	shown	as	‘A’	instead	of	‘x.’		Build	two	
ShufflePlayer	objects	(not	one,	as	in	Step	1),	each	with	their	own	zero	score,	position,	and	different	name	to	
start	–	you	should	not	need	to	change	the	ShufflePlayer.java	code	to	do	this.		Draw	a	single	playing	surface	and	
print	both	A	and	B’s	scores	below	the	playing	surface.			

3. Add	a	DO-WHILE	loop	on	the	outside,	such	that	the	loop	you	wrote	before	will	be	nested	inside	it.		This	loop	
allows	us	to	know	if	it’s	A’s	turn	or	B’s	turn.		When	the	loop	count	is	odd	(starting	from	1),	prompt	for	user	A	to	
press	Enter,	then	print	the	appropriate	A	biscuit	as	moving	in	response	to	a	random	number	being	made.		When	
the	loop	count	is	even,	prompt	for	user	B	and	show	biscuit	B	as	moving	in	response	to	a	random	number.		Stop	
the	DO-WHILE	loop	when	the	user	types	-1	(a	sentinel	value).		Since	you	were	reading	in	Enter	before,	you	will	
want	to	use	as	a	condition	for	a	DO	WHILE	LOOP:	

!	(input.equals(“-1”)	
It’s	easiest	to	have	a	temporary	variable	for	the	biscuit	name	(either	A	or	B)	and	a	temporary	variable	for	the	
score	(either	A’s	score	or	B’s	score)	that	you	can	toggle	between	depending	on	which	cycle	of	the	DO-WHILE	
loop	you	are	running.			

4. Tell	who	is	winning:	A	or	B.	
	



Some	notes	about	Step	2’s	version	of	play:	
• Let’s	assume	there	is	a	playing	surface	and	the	biscuits	cannot	hit	each	other,	for	this	version.			
• A	will	show	up	on	the	left	when	you	first	begin,	but	after	that,	we	won’t	show	a	new	biscuit	on	the	left,	so	

it’s	easier	to	program	as	we	progress;	we	don’t	intend	to	have	more	than	two	biscuits	ever	on	the	playing	
surface.			

• Note	that	random	numbers	are	not	additive;	biscuits	are	always	thrown	from	the	far	left.			
• If	two	biscuits	land	on	the	same	spot,	the	last	one	to	be	thrown	appears.	
• Your	programming	teacher	is	not	endorsing	throwing	food;	if	you	simulate	this	game	at	home	with	one	

biscuit	(Step	1),	your	mom	might	not	say	anything,	but	if	you	try	to	play	with	two	(Step	2),	you	are	bound	to	
make	her	angry	and	made	to	think	that	you	are	wasting	food.		Biscuits	here	are	not	food,	anyhow.		J		Still,	
playing	shuffleboard	makes	me	hungry	for	biscuits!	

Step	3:	Make	the	Shuffleboard	game	work	for	two	people,	multiple	times	(Extra	Credit):	

1. Now	let’s	throw	a	new	biscuit	on	that	can	cause	the	old	biscuit	to	move,	if	it	is	struck.		This	is	for	bonus	credit.		
No	arrays	or	lists	allowed.		Let’s	only	use	what	we	already	know	how	to	do	in	this	class.		This	will	require	some	
additional	conditions.		Save	Step	2’s	version	so	you	have	it	functioning	and	complete	before	you	try	Step	3.		DO	
NOT	OVERWRITE	Step	2’s	version.		How	it	works:	

a. Pseudocode	is	required!	
b. After	one	biscuit	has	already	been	thrown	by	each	player	the	usual	way,	the	user	can	decide	to	throw	

hard,	regular,	light,	or	rethrow.		Read	the	input	with	the	same	method	and	Scanner	you	were	using	
before.			Remember	we	use	.equals()	to	check	Strings.	

c. Throwing	hard	means	that	IF	you	equal	or	exceed	your	old	biscuit’s	value,	it	will	jump	to	the	right	4	
places.		Print	the	calculated	jump	next	to	the	random	number	generated,	so	you	can	check	your	work.	

d. 	Throwing	regular	means	that	IF	you	equal	or	exceed	your	old	biscuit’s	value,	it	will	jump	to	the	right	2	
places.		Print	the	calculated	jump	next	to	the	random	number	generated,	so	you	can	check	your	work.	

e. Throwing	light	means	that	IF	you	equal	or	exceed	your	old	biscuit’s	value,	it	will	jump	to	the	right	1	
place.		Print	the	calculated	jump	next	to	the	random	number	generated,	so	you	can	check	your	work.	

f. Throwing	rethrow	means	that	you	throw	again	just	like	in	Step	2	(above);	there	will	be	a	complete	
replacement	of	your	old	throw	with	this	new	throw.	

g. All	four	types	of	throws	generate	the	random	number	the	same	way	as	before.	
h. If	you	throw	hard,	regular,	or	light	and	do	not	exceed	the	old	biscuit’s	value,	your	old	biscuit	will	stay	

where	it	was.		You	will	not	collect	points	again	(as	you	did	not	move).	
i. There	are	still	only	two	biscuits	(maximum)	ever	shown	on	the	playing	surface.	
j. If	you	throw	(either	of	the	four	kinds)	so	the	biscuit	lands	where	the	other	player’s	biscuit	was,	the	

moving	biscuit	takes	that	position	and	the	old	biscuit	disappears	(just	like	in	Step	2,	above).	
k. When	your	biscuit	moves,	add	points	to	your	score.	
l. Assume	player	A	can	only	move	player	A’s	biscuits,	and	player	B	can	only	move	player	B’s	biscuits,	

UNLESS	a	player	lands	on	another	player’s	position	(as	described	above	and	in	Step	2).	
m. If	your	placement	on	the	playing	surface	exceeds	10,	the	biscuit	should	not	be	shown	and	you	should	

print	“____’s	biscuit	fell	off	the	playing	surface.”	and	indicate	who	won	(the	blank	is	either	A	or	B).		The	
game	should	terminate	(set	your	variable	to	the	sentinel	value	or	add	to	your	DO-WHILE	condition	so	it	
can	use	another	sentinel	value.	
	

2. You	can	do	part	or	all	of	the	extra	credit,	to	earn	some	extra	points.		You	will	have	to	print	your	code	and	turn	it	
in	with	a	written	English	statement	about	how	you	accomplished	each	of	the	requirements	in	Step	3,	to	earn	
your	points.	



	
Here’s	some	sample	output	of	Step	3,	to	help	address	any	questions:	

	
A	 -	 -	 -	 -	 -	 -	 10	 8	 7	 -10	
A’s	score	is	0.	
B’s	score	is	0.	
No	one	is	winning.	
A,	press	Enter	to	push	your	biscuit.	
	

	 Random	number	is	4.	

-	 -	 -	 -	 A	 -	 -	 10	 8	 7	 -10	
A’s	score	is	0.	
B’s	score	is	0.	
No	one	is	winning.	
B,	press	Enter	to	push	your	biscuit.	
	

Random	number	is	6.	

-	 -	 -	 -	 A	 -	 B	 10	 8	 7	 -10	
A’s	score	is	0.	
B’s	score	is	0.	
No	one	is	winning.	
A,	type	hard,	regular,	or	light	for	strength	of	throw	to	knock	an	old	biscuit,	or	rethrow	to	throw	brand	new	
biscuit.		Type	-1	to	quit.	
hard	
	
	
Random	number	is	5.		Biscuit	jumped	4	places	to	7.	
-	 -	 -	 -	 -	 -	 B	 A	 8	 7	 -10	
A’s	score	is	10.	
B’s	score	is	0.	
A	is	winning.	
B,	type	hard,	regular,	or	light	for	strength	of	throw	to	knock	an	old	biscuit,	or	rethrow	to	throw	brand	new	
biscuit.		Type	-1	to	quit.	
light	
	
	
Random	number	is	9.		Biscuit	jumped	from	6	to	7.	
-	 -	 -	 -	 -	 -	 -	 B	 8	 7	 -10	
A’s	score	is	10.	
B’s	score	is	10.	
No	one	is	winning.	
A,	type	hard,	regular,	or	light	for	strength	of	throw	to	knock	an	old	biscuit,	or	rethrow	to	throw	brand	new	
biscuit.		Type	-1	to	quit.	
rethrow	



	
	
Random	number	is	2.	
-	 -	 A	 -	 -	 -	 -	 B	 8	 7	 -10	
A’s	score	is	10.	
B’s	score	is	10.	
No	one	is	winning.	
B,	type	hard,	regular,	or	light	for	strength	of	throw	to	knock	an	old	biscuit,	or	rethrow	to	throw	brand	new	
biscuit.		Type	-1	to	quit.	
light	
	
	
Random	number	is	1.		Biscuit	did	not	jump.	
-	 -	 A	 -	 -	 -	 -	 B	 8	 7	 -10	
A’s	score	is	10.	
B’s	score	is	10.	
No	one	is	winning.	
A,	type	hard,	regular,	or	light	for	strength	of	throw	to	knock	an	old	biscuit,	or	rethrow	to	throw	brand	new	
biscuit.		Type	-1	to	quit.	
-1	

	


